AUTOMOTIVE GRADE

Vishay Semiconductors

High Power Infrared Emitting Diode, 850 nm, Surface Emitter Technology

DESCRIPTION

As part of the <u>SurfLightTM</u> portfolio, the VSMY7852X01 is an infrared, 850 nm emitting diode based on surface emitter technology with high radiant power and high speed, molded in low thermal resistance Little Star package. A 20 mil chip provides outstanding low forward voltage and allows DC operation of the device up to 250 mA.

APPLICATIONS

- Infrared illumination for CMOS cameras (CCTV)
- Driver assistance systems
- Machine vision IR data transmission

FEATURES

Package type: surface mount

Package form: Little Star®

• Dimensions (L x W x H in mm): 6.0 x 7.0 x 1.5

• Peak wavelength: $\lambda_p = 850 \text{ nm}$

High reliability

· High radiant power

· High radiant intensity

• Angle of half intensity: $\phi = \pm 60^{\circ}$

Low forward voltage

 Designed for high drive currents: up to 250 mA DC and up to 1.5 A pulses

Low thermal resistance: R_{thJP} = 15 K/W

• Floor life: 4 weeks, MSL 2a, acc. J-STD-020

· Lead (Pb)-free reflow soldering

AEC-Q101 qualified

 Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

Note

Test conditions see table "Basic Characteristics"

ORDERING INFORMATION							
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM				
VSMY7852X01-GS08	Tape and reel	MOQ: 2000 pcs. 2000 pcs/reel	Little Star				

Note

· MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
Reverse voltage		V_{R}	5	V			
Forward current		I _F	250	mA			
Peak forward current	$t_p/T = 0.5, t_p = 100 \mu s$	I _{FM}	500	mA			
Surge forward current	t _p = 100 μs	I _{FSM}	1.5	Α			
Power dissipation		P_V	500	mW			
Junction temperature		Tj	125	°C			
Operating temperature range		T _{amb}	- 40 to + 100	°C			
Storage temperature range		T _{stg}	- 40 to + 100	°C			
Soldering temperature	Acc. figure 7, J-STD-20	T _{sd}	260	°C			
Thermal resistance junction/pin	Acc. J-STD-051, soldered on PCB	R_{thJP}	15	K/W			

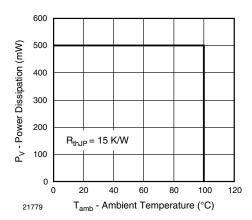


Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

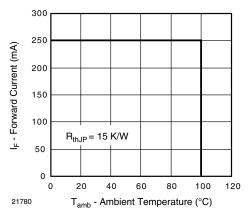


Fig. 2 - Forward Current Limit vs. Ambient Temperature

BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Forward voltage	$I_F = 250 \text{ mA}, t_p = 20 \text{ ms}$	V _F		1.8	2.0	V		
	$I_F = 1.5 \text{ A}, t_p = 100 \mu \text{s}$	V _F		2.8		V		
Temperature coefficient of V _F	I _F = 1 mA	TK _{VF}		- 1.5		mV/K		
Reverse current	V _R = 5 V	I _R	not designed for reverse operation			μΑ		
B #	$I_F = 250 \text{ mA}, t_p = 20 \text{ ms}$	l _e	30	42	90	mW/sr		
Radiant intensity	$I_F = 1.5 \text{ A}, t_p = 100 \mu \text{s}$	l _e		220		mW/sr		
Radiant power	$I_F = 250 \text{ mA}, t_p = 20 \text{ ms}$	фe		130		mW		
Temperature coefficient of φ _e	I _F = 1 A	TKφ _e		- 0.5		%/K		
Angle of half intensity		φ		± 60		deg		
Peak wavelength	I _F = 250 mA	λρ		850		nm		
Spectral bandwidth	I _F = 250 mA	Δλ		30		nm		
Temperature coefficient of λ_p	I _F = 250 mA	TKλ _p		0.2		nm/K		
Rise time	I _F = 250 mA	t _r		8		ns		
Fall time	I _F = 250 mA	t _f		10		ns		

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

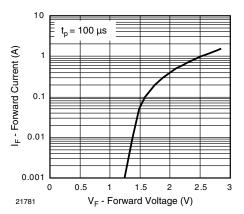


Fig. 3 - Forward Current vs. Forward Voltage

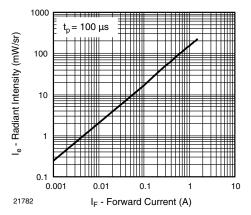


Fig. 4 - Radiant Intensity vs. Forward Current

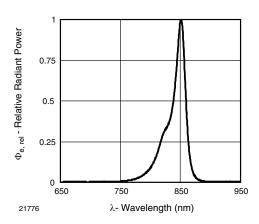


Fig. 5 - Relative Radiant Power vs. Wavelength

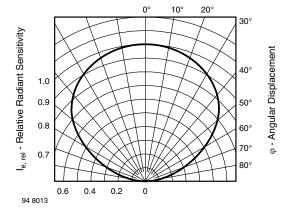
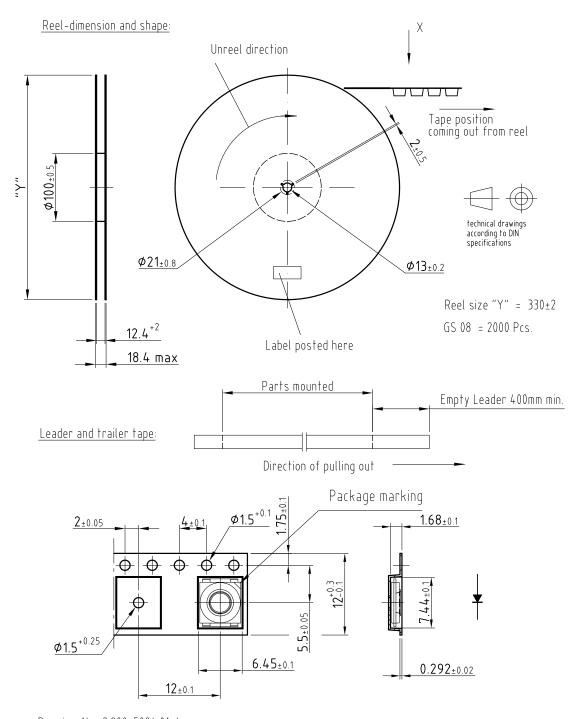
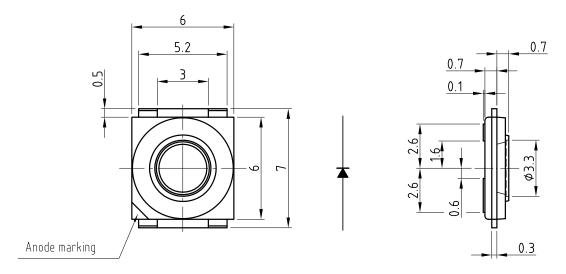
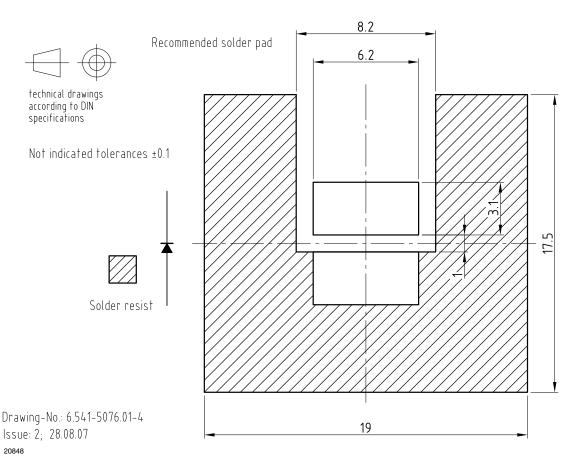



Fig. 6 - Relative Radiant Intensity vs. Angular Displacement

TAPING DIMENSIONS in millimeters




Drawing-No.: 9.800-5094.01-4

Issue: 3; 22.01.08

20846

PACKAGE DIMENSIONS in millimeters

SOLDER PROFILE

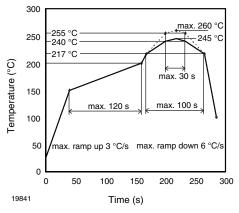


Fig. 7 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020 for Preconditioning acc. to JEDEC, Level 2a

DRYPACK

Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

FLOOR LIFE

Floor life (time between soldering and removing from MBB) must not exceed the time indicated on MBB label:

Floor life: 4 weeks

Conditions: T_{amb} < 30 °C, RH < 60 %

Moisture sensitivity level 2a, acc. to J-STD-020B

DRYING

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40 $^{\circ}$ C (+ 5 $^{\circ}$ C), RH < 5 $^{\circ}$ M.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000