# **Plastic Infrared Emitting Diode** ## **OP265FAA Series** #### Features: - T-1 (3 mm) package style - Narrow irradiance pattern - Dome lens - Higher power output than GaAs at equivalent drive currents - 850 nm diode #### **Description:** Each device in the **OP265FAA** series is a high intensity gallium arsenide infrared emitting diode (GaAIAs) that is molded in an IR transmissive clear epoxy package with a dome lens. Devices feature a narrow source irradiance pattern and a variety of electrical characteristics. The small T-1 package style makes these devices ideal for space-limited applications. These devices are mechanically and spectrally matched to other OPTEK products as follows: OP265 devices conform to the OP505 and OP535 series devices. Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data. ### **Applications:** - Space-limited applications - · Applications requiring coupling efficiency - Battery-operated or voltage-limited applications | Ordering Information | | | | | | | | | |-----------------------------------------------------------------|--|----------------------------------|---------------------|----------------|-------|--|--|--| | Part LED Peak Output Power (mW/cm²) Number Wavelength Min / Max | | I <sub>F</sub> (mA)<br>Typ / Max | Total Beam<br>Angle | Lead<br>Length | | | | | | OP265FAA | | 5.5 / NA | | | | | | | | <b>OP265FAB</b> 850 nm | | 7.5 / 12.5 | 20 / 50 | 18° | 0.50" | | | | | OP265FAC | | 11.5 / 16.5 | | | | | | | For identification purposes, ANODE lead is shorter that the CATHODE lead in order to differentiate this product from regular OP265 and/or OP313. | Pin # | LED | | | |-------|---------|--|--| | 1 | Cathode | | | | 2 | Anode | | | ### NOTES: - OUTSIDE DISCRETE SHELL IS POLYSULFONE P1700 CLEAR. - 2. THIS LED IS BUILT WITH A 850nm CHIP. - 3. MAX ALLOWABLE EPOXY MINISCUS IS 0.030. - 4. FOR IDENTIFICATION PURPOSES, ANODE LEAD IS .065 $\pm$ .035 **SHORTER** THAN THE CATHODE LEAD. ### CONTAINS POLYSULFONE To avoid stress cracking, we suggest using ND Industries' **Vibra-Tite** for thread-locking. **Vibra-Tite** evaporates fast without causing structural failure in OPTEK'S molded plastics. General Note TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print. OPTEK Technology, Inc. 1645 Wallace Drive, Carrollton, TX 75006 | Ph: +1 972 323 2200 www.optekinc.com | www.ttelectronics.com # **Plastic Infrared Emitting Diode** ## **OP265FAA Series** ## **Electrical Specifications** | <b>Absolute Maximum Ratings</b> (T <sub>A</sub> = 25° C unless otherwise noted) | | | | | |---------------------------------------------------------------------------------------------|-----------------------|--|--|--| | Storage and Operating Temperature Range | -40° C to +100° C | | | | | Reverse Voltage | 2.0 V | | | | | Continuous Forward Current | 50 mA | | | | | Peak Forward Current (1 μs pulse width, 300 pps) | 3.0 A | | | | | Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron] | 260° C <sup>(1)</sup> | | | | | Power Dissipation | 100 mW <sup>(2)</sup> | | | | #### Notes: - 1. RMA flux is recommended. Duration can be extended to 10 second maximum when flow soldering. A maximum of 20 grams force may be applied to the leads when soldering. - 2. Derate linearly at 1.33 mW/° C above 25° C. - 3. E<sub>E(APT)</sub> is a measurement of the average apertured radiant incidence upon a sensing area 0.081" (2.06 mm) in diameter, perpendicular to and centered on the mechanical axis of the lens and 0.590" (14.99 mm) from the measurement surface. E<sub>E(APT)</sub> is not necessarily uniform within the measured area. | Electrical Characteristics (T <sub>A</sub> = 25° C unless otherwise noted) | | | | | | | | | |----------------------------------------------------------------------------|--------------------------------------------------------|-----------------------|-------------|-------------------|--------|-----------------------------------------------------------------------------------------------------|--|--| | SYMBOL | PARAMETER | MIN | TYP | MAX | UNITS | TEST CONDITIONS | | | | Input Diode | | | | | | | | | | E <sub>E (APT)</sub> | Apertured Radiant Incidence OP265FAA OP265FAB OP265FAC | 5.50<br>7.50<br>11.50 | -<br>-<br>- | -<br>12.5<br>16.5 | mW/cm² | $I_F$ = 20 mA Aperture = 0.081" diameter Distance = 0.590" from seating surface to aperture surface | | | | V <sub>F</sub> | Forward Voltage | - | - | 1.80 | V | I <sub>F</sub> = 20 mA | | | | I <sub>R</sub> | Reverse Current | - | 10 | - | μΑ | V <sub>R</sub> = 10 V | | | | $\lambda_{P}$ | Wavelength at Peak Emission | - | 850 | - | nm | I <sub>F</sub> = 10 mA | | | | $\Delta \lambda_P / \Delta T$ | Spectral Shift with Temperature | - | ±0.18 | - | nm/°C | I <sub>F</sub> = Constant | | | | $\theta_{\sf HP}$ | Emission Angle at Half Power Points | - | 18 | - | Degree | I <sub>F</sub> = 20 mA | | | | t <sub>r</sub> | Output Rise Time | - | 10 | - | ns | I <sub>F(PK)</sub> =100 mA, PW=10 μs, D.C.=10.0% | | | | t <sub>f</sub> | Output Fall Time | - | 10 | - | ns | | | | Issue F 07/2016 Page 2 # **Plastic Infrared Emitting Diode** **OP265FAA Series** ## Performance OP265F (AA, AB, AC) General Note TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.