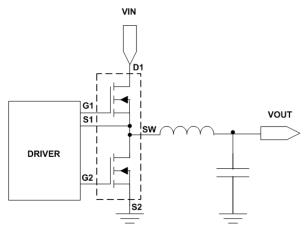
PowerPhase, Dual N-Channel SO8FL


30 V, High Side 20 A / Low Side 26 A

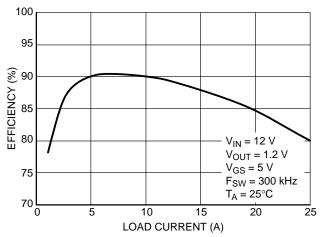
Features

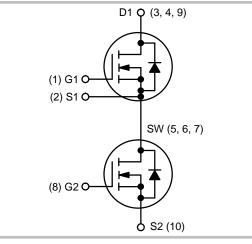
- Co-Packaged Power Stage Solution to Minimize Board Space
- Minimized Parasitic Inductances
- Optimized Devices to Reduce Power Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

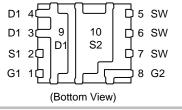
Applications

- DC-DC Converters
- System Voltage Rails
- Point of Load

Figure 1. Typical Application Circuit




Figure 2. Typical Efficiency Performance POWERPHASEGEVB Evaluation Board


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
Q1 Top FET	5.4 mΩ @ 10 V	20.4
30 V	8.1 mΩ @ 4.5 V	20 A
Q2 Bottom	3.1 mΩ @ 10 V	26 A
FET 30 V	4.3 mΩ @ 4.5 V	26 A

PIN CONNECTIONS

DFN8 CASE 506CR

MARKING

4C87N = Specific Device Code A = Assembly Location

Y = Year

W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter		Symbol	Value	Unit			
Drain-to-Source Voltage	Q1	V _{DSS}	30	V			
Drain-to-Source Voltage	Q2						
Gate-to-Source Voltage	Q1	V_{GS}	±20	V			
Gate-to-Source Voltage			Q2				
Continuous Drain Current R _{θJA} (Note 1)		T _A = 25°C	Q1	I _D	15.4		
		T _A = 85°C			11.1	1 ,	
		T _A = 25°C	Q2		19.5	A	
		T _A = 85°C			14.1	1	
Power Dissipation		T _A = 25°C	Q1	P_{D}	1.89	W	
RθJA (Note 1)			Q2				
Continuous Drain Current $R_{\theta JA} \le 10 \text{ s (Note 1)}$		T _A = 25°C	Q1	I _D	21.0		
		T _A = 85°C			15.1	1 .	
	Steady	T _A = 25°C	Q2		26.6	A	
	State	T _A = 85°C			19.2		
Power Dissipation	7	T _A = 25°C	Q1	P_{D}	3.51	W	
$R_{\theta JA} \le 10 \text{ s (Note 1)}$			Q2				
Continuous Drain Current		T _A = 25°C	Q1	I _D	11.7		
R _{θJA} (Note 2)		T _A = 85°C			8.5	1	
		T _A = 25°C	Q2		14.9	A	
		T _A = 85°C			10.7	1	
Power Dissipation		T _A = 25 °C	Q1	P_{D}	1.10	W	
R _{θJA} (Note 2)			Q2				
Pulsed Drain Current	•	T _A = 25°C	Q1	I _{DM}	160	Α	
		t _p = 10 μs	Q2		260	1	
Operating Junction and Storage Temperature	Q1	T _J , T _{STG}	-55 to +150	°C			
	Q2						
Source Current (Body Diode)	Q1	I _S	10	Α			
	Q2		10	1			
Drain to Source DV/DT		dV/dt	6	V/ns			
Single Pulse Drain-to-Source Avalanche Energy (T.	Q1	EAS	20	mJ			
$V_{DD} = 50 \text{ V}, V_{GS} = 10 \text{ V}, L = 0.1 \text{ mH}, R_G = 25 \Omega$	Q2	EAS	45	1			
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		T _L	260	°C			

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface—mounted on FR4 board using 1 sq—in pad, 2 oz Cu.

2. Surface—mounted on FR4 board using the minimum recommended pad size of 100 mm².

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	66.0	
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	113.7	°C/W
Junction-to-Ambient - (t ≤ 10 s) (Note 3)	$R_{\theta JA}$	35.6	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	FET	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					•	•		<u>.</u>
Drain-to-Source Break-	Q1	.,	$V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A}$		30			V
down Voltage	Q2	V _{(BR)DSS}			30			
Drain-to-Source Break-	Q1	V _{(BR)DSS}	3			15.8		mV / °C
down Voltage Temperature Coefficient	Q2	/T _J				15.3		
Zero Gate Voltage Drain	Q1	I _{DSS}	$V_{GS} = 0 V$	T _J = 25°C			1	
Current			$V_{DS} = 24 \text{ V}$	T _J = 125°C			10	μΑ
	Q2		V _{GS} = 0 V, V _{DS} = 24 V	T _J = 25°C			1	pu 1
Gate-to-Source Leakage	Q1	I_{GSS}	$V_{GS} = 0 V$,	VDS = +20 V			100	A
Current							100	nA
ON CHARACTERISTICS (Not	e 5)							
Gate Threshold Voltage	Q1	V _{GS(TH)}	$V_{GS} = VDS$, $I_D = 250 \mu A$		1.3		2.2	V
	Q2				1.3		2.2	\ \
Negative Threshold Temper- ature Coefficient	Q1	V _{GS(TH)} /				5.0		mV /
ature Coemcient	Q2	1,1				5.1		°C
Drain-to-Source On Resist- ance	Q1	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		4.3	5.4	
ance			$V_{GS} = 4.5 \text{ V}$	I _D = 18 A		6.5	8.1	mΩ
	Q2		$V_{GS} = 10 \text{ V}$ $I_D = 30 \text{ A}$ $V_{GS} = 4.5 \text{ V}$ $I_D = 30 \text{ A}$			2.5	3.1	11152
						3.4	4.3	
CAPACITANCES								
Innut Congoitance	Q1	C				1252		
Input Capacitance Q		C _{ISS}				1939		
Output Conneitone	Q1	Cara	V0V f-1MHz V -45V			610		pF
Output Capacitance	Q2	C _{OSS}	v _{GS} = 0 v, i = 1	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz, } V_{DS} = 15 \text{ V}$		1055		
Payaraa Canaaitanaa	Q1					129		
Reverse Capacitance	Q2	C _{RSS}				49		1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

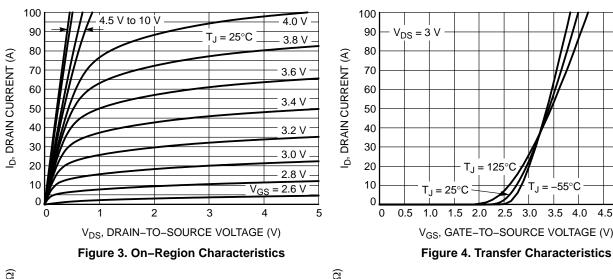
5. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.

6. Switching characteristics are independent of operating junction temperatures.

Surface–mounted on FR4 board using 1 sq-in pad, 2 oz Cu.
 Surface–mounted on FR4 board using the minimum recommended pad size of 100 mm².

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	FET	Symbol	Test Condition		Min	Тур	Max	Unit	
CHARGES, CAPACITANCES	CHARGES, CAPACITANCES & GATE RESISTANCE								
T. 10 . 0	Q1				10.9				
Total Gate Charge	Q2	$Q_{G(TOT)}$				13.8			
Three-chieff Code Observe	Q1	0				1.2			
Threshold Gate Charge	Q2	Q _{G(TH)}	V 45.V.V	45.77.1 00.4		2.0			
Cata ta Causa Chassa	Q1	0	$V_{GS} = 4.5 \text{ V}, V_{DS}$	$= 15 \text{ V}; I_D = 30 \text{ A}$		3.4		nC	
Gate-to-Source Charge	Q2	Q_GS				5.5			
Cata to Drain Charge	Q1	0				5.4			
Gate-to-Drain Charge	Q2	Q_GD				3.6			
Total Cata Charms	Q1	0	V 40.V.V	45.1/-1 20.4		22.2		0	
Total Gate Charge	Q2	$Q_{G(TOT)}$	$V_{GS} = 10 \text{ V}, V_{DS}$	= 15 V; I _D = 30 A		30.3		nC	
Cata Basistanas	Q1	R_{G}	т	25.00		1.0		0	
Gate Resistance	Q2		T _A =	25°C		1.0		Ω	
SWITCHING CHARACTERISTICS (Note 6)									
Turn On Dolov Time	Q1					8.9			
Turn-On Delay Time	Q2	t _{d(ON)}				10.6			
Rise Time	Q1	4	V _{GS} = 4.5 V, V _{DS} = 15 V,			21.2		200	
Rise Time	Q2	t _r				4.6			
Turn Off Dolov Time	Q1	4	$I_D = 15 A, I$	$R_G = 3.0 \Omega$		15.3		ns	
Turn-Off Delay Time	Q2	t _{d(OFF)}				21			
Fall Time	Q1	+				4.4			
rali Tillie	Q2	t _f				4.9			
SWITCHING CHARACTERIS	SWITCHING CHARACTERISTICS (Note 6)								
Turn-On Delay Time	Q1	+				6.7			
Turn-On Delay Time	Q2	t _{d(ON)}				8.1			
Rise Time	Q1	+				19.5			
Kise Time	Q2	t _r	V _{GS} = 10 V,	V _{DS} = 15 V,		15		ns	
Turn-Off Delay Time	Q1	t	$I_{D} = 15 \text{ A}, I$	$R_G = 3.0 \Omega$		20.1		113	
Turn-On Delay Time	Q2	t _{d(OFF)}				26.2			
Fall Time	Q1	+.				2.8]	
rali fillie	Q2	t _f				3.1			
DRAIN-SOURCE DIODE CHARACTERISTICS									
	"		V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.82			
Forward Voltage		I _S = 10 A	T _J = 125°C		1.15		V		
i oi waiu voilage	02	V SD	V _{SD} V _{GS} = 0 V, I _S = 10 A	$T_J = 25^{\circ}C$		0.8			
Q2	Q2			T _J = 125°C		1.10			


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	FET	Symbol	Test Condition	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHARACTERISTICS							
Boyoroo Boooyory Timo	Q1	4			29.1		
Reverse Recovery Time	Q2	t _{RR}			40.2		
Chargo Timo	Q1	to	ta		14.2		ns
Charge Time	Q2	ta			19.5		
Discharge Time	Q1	4h	$V_{GS} = 0 \text{ V}, d_{IS}/d_t = 100 \text{ A/}\mu\text{s}, I_S = 30 \text{ A}$		14.6		
Discharge Time	Q2	tb	to l		20.6		
Dayoraa Dagayary Charga	Q1	0			21		
Reverse Recovery Charge	Q2	Q_{RR}			39		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS - Q1

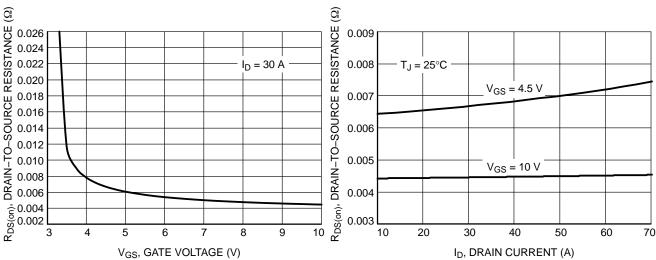


Figure 5. On-Resistance vs. Gate-to-Source Voltage

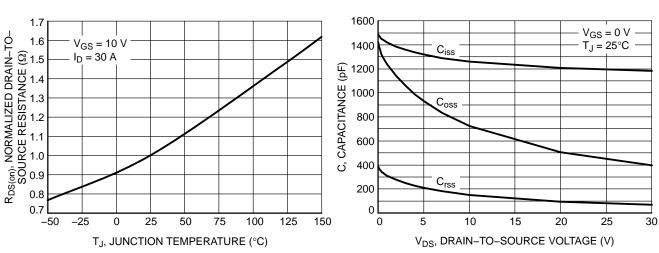


Figure 7. On-Resistance Variation with **Temperature**

Figure 8. Capacitance Variation

Figure 6. On-Resistance vs. Drain Current and **Gate Voltage**

3.5 4.0 4.5 5.0 5.5

TYPICAL CHARACTERISTICS - Q1

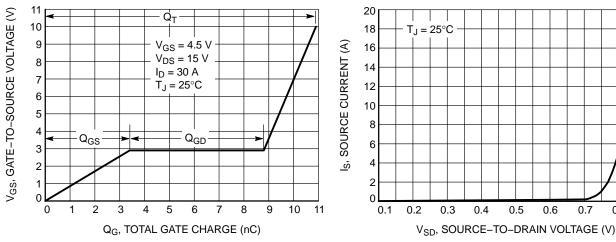


Figure 9. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Figure 10. Diode Forward Voltage vs. Current

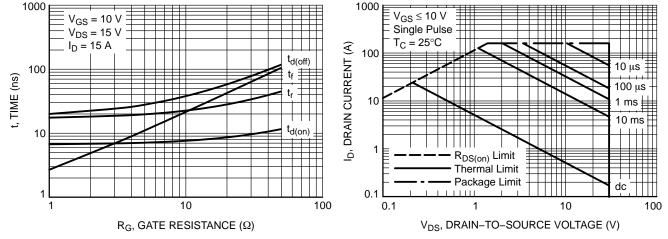


Figure 11. Resistive Switching Time Variation vs. Gate Resistance

Figure 12. Maximum Rated Forward Biased Safe Operating Area

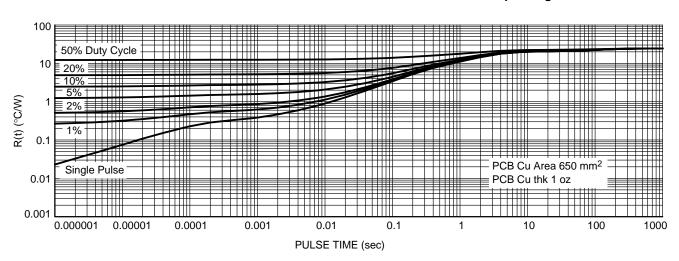


Figure 13. Thermal Characteristics

TYPICAL CHARACTERISTICS - Q2

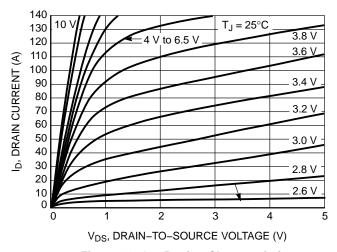


Figure 14. On-Region Characteristics

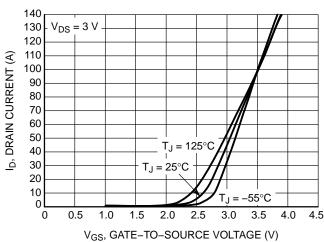


Figure 15. Transfer Characteristics

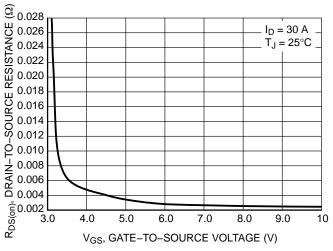


Figure 16. On-Resistance vs. V_{GS}

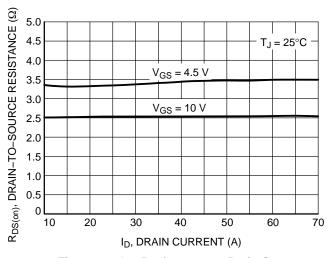


Figure 17. On-Resistance vs. Drain Current and Gate Voltage

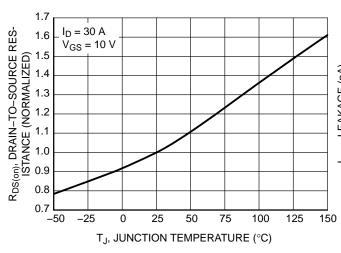


Figure 18. On–Resistance Variation with Temperature

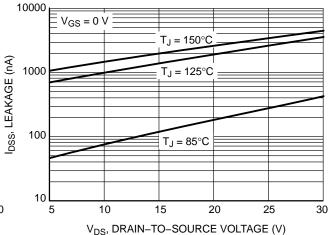


Figure 19. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS - Q2

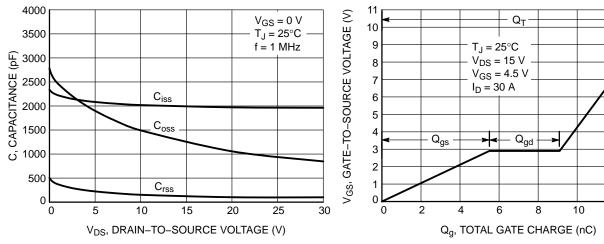


Figure 20. Capacitance Variation

Figure 21. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

12

14

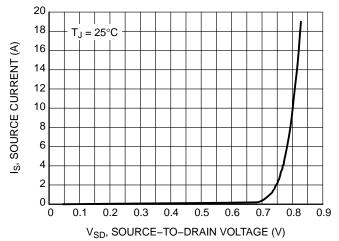


Figure 22. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS - Q2

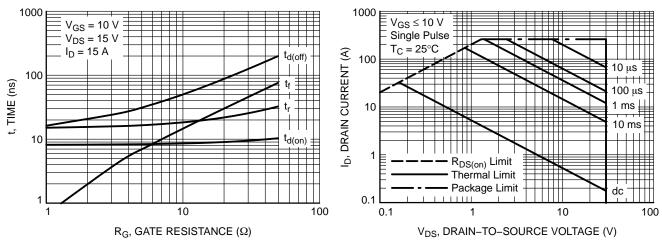


Figure 23. Resistive Switching Time Variation vs. Gate Resistance

Figure 24. Maximum Rated Forward Biased Safe Operating Area

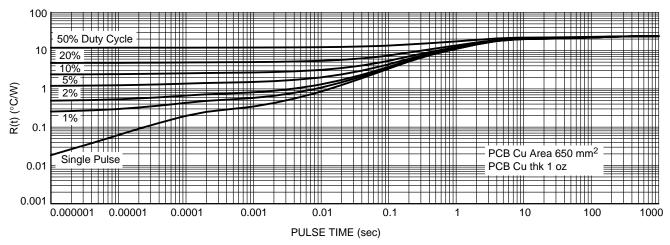
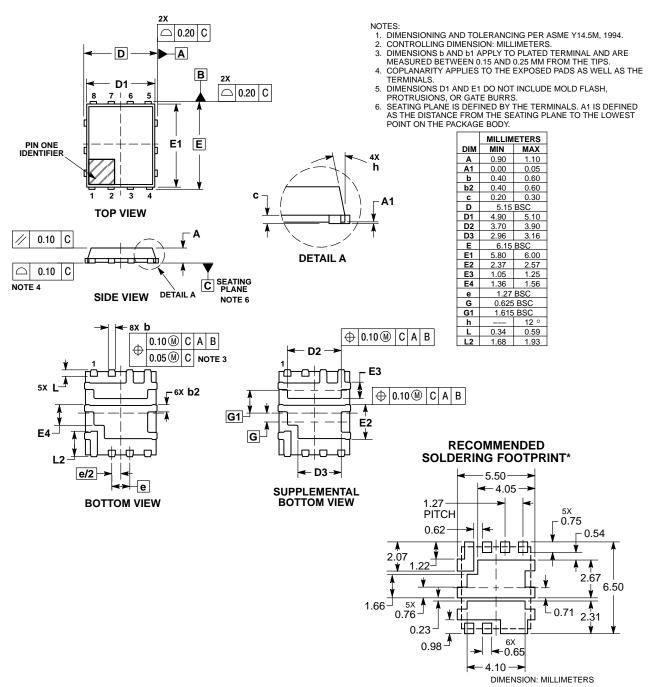


Figure 25. Thermal Characteristics

ORDERING INFORMATION


Device	Package	Shipping [†]
NTMFD4C87NT1G	DFN8 (Pb-Free)	1500 / Tape & Reel
NTMFD4C87NT3G	DFN8 (Pb-Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DFN8 5x6, 1.27P PowerPhase FET

CASE 506CR ISSUE C

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative