Freescale Semiconductor
Application Note

Document Number: AN4228
Rev. 0, 10/2010

MSC8156EVM Kernels Starting Guide

This document provides a starting guide to some commonly
used digital signal processing functions available for use
with the Freescale M SC8156EVM board. The example
projects are demonstrated in thisguide. The objective of this
document isto help the users integrate various independent
projects using these kernels.

1 Introduction

The MSC8156EVM is supported by a collection of
commonly used digital signal processing kernels that
function with the SC3850 DSP core. The project described
in this document provides the kernel library consisting of C
and assembly callable kernel applications, aswell astheir
test harnesses. This tutorial guide demonstrates how to use
several of the most useful and representative kernel
examples such as FIR and I IR filters, FFT, Divide and
Matrix Inverse.

NOTE

Download the kernel software package from
the MSC8156EVM Tool Summary Page on
www.freescale.com.

© 2010 Freescale Semiconductor, Inc.

W N -

4.2
4.3
4.4
4.5
4.6
4.7
4.8

Contents
Introduction. 1
What You Need to RunthisProject 2
Test Procedures. 3
Common Kernel Example Demonstration............ 4
FIR_complex_16X16..........c.ovuviiiinnnnnn. 5
Complex Radix-4 FFT/IFFT 16x16. 6
Complex Radix-2 and Radix-4 FFT/IFFT 16x16 9
IR 10
DiviSION16X16oviiii 12
I 13
Matrix Inversion Complex 2x2 14
Matrix Inversion Complex4x4 15
freescale"

semiconductor

What You Need to Run this Project

2 What You Need to Run this Project

Running the DSP kernels requires the following devices:

» Personal computer (PC) with CodeWarrior for StarCore-Based DSP IDE for the MSC8156EVM

board connected to the PC
» MSC8156EVM board

The MSC8156EV M project includes the following kernels:

* FIR _complex_16x16

o Complex Radix-4 FFT/IFFT 16x16
* Complex Radix-4 and Radix-2 FFT/IFFT 16x16

e |IR
e Division
e Ln

e Matrix Inversion complex 2x2
e Matrix Inversion complex 4x4

Figure 1 showsthe folder directory of all the kernel example projects.

=) fel_sc3350_kernels
Bl) code
H I ew
= 5 sre
I s
() incdude
() 5c3850
) docs
) lib
E D) tests
E) erc_enc
H 12 ew
() src
] vectors
& D) div
) fft_256_16x16
() fft_256_16x32
) fir_complex_16x16
@ () fir_real_8x16
[[fir_real_16x16
3) fir_real_32x32
() linker_control_files
® 2 lookup
H I sart

Freescale SC3830 kemels
- Library code
- CodeWamior projectto create the SC3830 kemel library
- Source codes
- C code for 3C3830 kemels
-Header files for SC3830 kemels
- ASM code for SC3830 kemels
- Documentation
- Library is placedin this directory
- Project and code for testing the library
- Testing diractorv for the CEC kemel (eachkemel has one directory)
- CodeWamor test project
- Testing source codes
- Input andreference vectors for verfication
- Testing directory for DIV
- Testing directory for FFT_236_16x16
- Testing directory for FFT_236_16x32
- Testing directory for FIE_complex_16x16
- Testing directory for FIR_real 2x16
- Testing directory for FIE _real 16x16
- Testing directory for FIE. real 32x32
- Linker control files for the testing CW projects
- Testing directory for lookup
- Testing directory for sqr

Figure 1. Kernel Example Project Directory

MSC8156EVM Kernels Starting Guide, Rev. 0

Freescale Semiconductor

Test Procedures

3 Test Procedures

Use the following steps to prepare for and run the project:

1. Import the SC3850 DSP kernel library by dragging the .project filein
\fsl sc3850 kernels\code\cw\sc3850 kernels t0the CodeWarrior pl’Oj ect window (FI gure 2)

E‘ R x |EE2118, 2 Fil= Mame |
File Mame Size Type Build |
E '-,:‘E. sC3850_kernels | SC3E50_ASM
£ Eﬁrl_, Archives
[
i Includes
= include
(£ sc3850
(> 5C3850_ASM
(= SC3850_C
\=| sc3850_kernels -*5C3850_C . launch 14 KB

HEBEEBEBR

Figure 2. Importing the Project Files

2. Build the kernel by clicking on the buildicon @& - .

After building the kernel project, .e1b filesare created in the folder £s1_sc3850 kernels\1ib.

4. After the kernel is built, you can run one of the test casesinthe \fs1_sc3850_kernels\test\
folder. Import the associated .project Of the selected test case and build the project. After
buildi ng thetest case, .c1a filesare created inthe \fs1 sc3850 kernels\tests\<test cases\cw
folder.

5. Load the project by clicking on the debug icon ﬁ T and selecting pebug Cconfigurations.

6. Select the appropriate launch configuration, that is, assembly or C test (Figure 3), and click on the
Debug button. Note that not all test cases are available in both assembly (ASM) and C. Some test
cases only have one option.

w

_, Codetarrior Akkach

| cadetwarrior Cannect

J Cogletarrior Download
[t Mi3850 kernels - SC3850_C

E kest_=cEAS0_fir_complex_16x16 - TEST _A5SM
E kest_sc3aS0_fir_complex_16x16 - TEST_C

+ Launch Group

L]

Figure 3. Launch Configuration

7. Runthe project by clickingontherunicon [Jj= .

NOTE
See Section 4, Common Kernel Example Demonstration for details on how to run the DSP
kernel test cases.

MSC8156EVM Kernels Starting Guide, Rev. 0

Freescale Semiconductor 3

Common Kernel Example Demonstration

4

Common Kernel Example Demonstration

After the DSP kernel library is built, the user can run one of the kernel test cases provided with the EVM.
This section provides detailed information for each kernel. For each kernel, the listing includes the
following:

L ocation from which to import thefile.
Function

ASM Prototype

C Prototype

Inputs

Outputs

Data alignment requirements (if applicable).
Performance M easurement

The following notes apply for al kernels:

1.
2.

Import the kernel as described in Section 3, Test Procedures.
DPU is adefined function that enables cycle measurements
#ifdef DPU
#define INIT CYCLE InitDPU()
#define GET_CYCLE ReadCountDPU()
#endif

The kernel is called twice in the example project. Thefirst call brings the kernel to cache so we
can measure the performance of the second call more with warm cache.

The test results printed in the CodeWarrior console should show the cycles used to complete the
kernel process and check with the reference outputs.

MSC8156EVM Kernels Starting Guide, Rev. 0

Freescale Semiconductor

4.1

Common Kernel Example Demonstration

FIR_complex_16x16

L ocation:
fsl sc3850 kernels\tests\fir complex 16xl6\cw\test sc3850 fir complex 16x16

Function:
FIR filtering with 16-bit complex inputs and coefficients

ASM Prototype:

void sc3850 fir complex 16x16 asm(Word32 x[], Word32 h[], Wordlé y[], Wordlé nr,
Wordlé nh) ;

C Prototype:
Void sc3850 fir complex 16x16 c(Word32 x[], Word32 h[], Wordlé y[], Wordlé nr, Wordlé
nh) ;

I nputs:

word32 x[1: 32-bit complex inputs, 16 bitsfor real part and 16 bits for imaginary part
word32 h{]: 32-bit complex coefficients, 16 bitsfor real and 16 bits for imaginary part
wordie Nr: nNumber of input data samples

wordie Nh: Number of elementsin the filter

In the test source code, these inputs are defined as shown in Figure 4.

#define Nr 40

fidefine Nh 40 Input data and coefficients are vectors stored

Wordlé Input[2* (2*Nr+Nh+2)]={ in.dat files

#include "../vectors/test_in_80.dat"

}i

Wordlé Coeff[2*Nh]=({ H H
#include "../vectors/coeff.dat" Tea—ln—8o has 244 entries
}i Coeff has 80 entries

Figure 4. Input Definitions

Output:
wordie y[]:16-bit output. Interleaved real and imaginary part

In the test source code, the output is computed and stored as shown in Figure 5.

stream = fopen ("./vectors/output_80.dat","w+");

for (i=0;i<2*2*Nr;i++)
{
fprintf(stream, "%d,\n", (int)Outputlil);

fclose(stream);

Figure 5. Output Definition
The output vector is stored to output_80.dat and compared with the reference output. If the
accuracy of thefilter is verified, in the CodeWarrior console it displays:
No wrong results found

MSC8156EVM Kernels Starting Guide, Rev. 0

Freescale Semiconductor

Common Kernel Example Demonstration

Performance Measurement:

Estimated cycle count: (Nr/2)*Nh + overhead
Measured cycle count: 939 cycles for asm
1390 cyclesfor C

4.2 Complex Radix-4 FFT/IFFT 16x16

Location

fsl sc3850 kernels\tests\fft ifft radix4 16xlé6\cw\test sc3850 fft ifft radix4 comple
x_16x16\

Function:

Radix-4 complex FFT with 16-bit input and 16-bit output. Input & output complex data are
stored in structure of [real][imag]. It supports 64, 256, 1024, and 4096 point FFTs.

ASM Prototype:
FFT:

void sc3850 fft radix4 complex 16x16 asm (
Wordlé data buffer([],
Wordlé wctwiddlesl(],
Wordlé wbdtwiddles|[],
Wordlé n,
Wordlé 1n,
Wordlée Shift down) ;

IFFT:

void sc3850 ifft radix4 complex 16x16 asm (
Wordlé data buffer(],
Wordlé wctwiddles|[],
Wordlé wbdtwiddles|[],
Wordlé n,
Wordlé 1n,
Wordlée Shift down) ;

C Prototype:
FFT:

void sc3850_ fft radix4 complex 16x16 _c (
Wordlé data buffer([],
Wordlé wctwiddles|[],
Wordlé wbdtwiddles][],
Wordlé n,
Wordlé 1n,
Wordlé Shift down) ;
IFFT:
void sc3850_ ifft radix4 complex 16x16 c (
Wordlé data buffer(],
Wordlé wctwiddles|[],
Wordlé wbdtwiddles][],
Wordlé n,
Wordlé 1n,
Wordlé shift_down) ;

MSC8156EVM Kernels Starting Guide, Rev. 0

6 Freescale Semiconductor

Common Kernel Example Demonstration

I nputs:

wordié data buffer[]: Addressof Input and Output Buffer. Input and output share one
memory area pointed by data_buffer.

word1le wetwiddles[]1: Address of the array of twiddle factor Wc

Wwordlé wbdtwiddles[]: Addressof the array of twiddle factor Wb and Wd

wordis n. FFT pOI nt

wordie 1n: Base4 Log(N). Number of FFT stages

wordle shift down: Scaling down parameter at each stage

These inputs are defined or imported by the lines in the test source file shown in Figure 6.

//input

stream = fopen("../vectors/64/input 64.dat", "r");
//wectwiddles

stream = fopen ("../vectors/64/wctwiddles 64.dat", "r");
/ /wbdtwiddles

stream = fopen (",./vectors/64/wbdtwiddles 64.dat", "r");

//n, 1ln, Shift down

#define SCALE DOWN FIXED 2

n = N;
In = LOG_4 N;

Shift down = SCALE DOWN FIXED;

Figure 6. Input Definitions

NOTE

The twiddle factors are generated in the test code. The input vector is stored and share
memory address with the output.

MSC8156EVM Kernels Starting Guide, Rev. 0

Freescale Semiconductor 7

Common Kernel Example Demonstration

Outputs:
wordié data buffer[] : Addressof Input and Output Buffer. Input and output share one big
memory area pointed by data_buffer. See Figure 7.

stream = fopen("../vectors/64/output FFT 64.dat", "w+");

for (i=0;i<2*N;i++)

{

fprintf(stream, "$04x\n", 0x0000FFFF& (int)data buffer outputl[il]) ;

}
fclose(stream);

Figure 7. Output Definition

Data alignment requirements:
data buffer AN
wctwiddles N
wbdtwiddles 2N
NOTES
1. Thisblock selects the number of FFT points, as shown in Figure 8.

#define N 64
//#define N 256
//#define N 1024
//#define N 4096

Figure 8. Number of FFT Points

2. FFT and IFFT are both written in the same test file. If an FFT project is built, then the test code
only runsthe FFT part and vice versa.

3. warmcacHe iSamacro to call the kernel twice to bring the code into the cache. Use only this macro
for cycle measurements. Otherwise, the input data is overwritten resulting with incorrect results.

#define WARMCACHE

Performance Measurement:
Estimated cycle count: 3N/4*log4d N -N/8 + 5*log4d N + 17
Measured cycle count for the ASM test: See Table 1.

Table 1. ASM Cycle Counts

Radix-4 FFT Lengths Cold Cache Warm Cache
64 351 235
256 1085 859
1024 4542 4141
4096 33645 31919

MSC8156EVM Kernels Starting Guide, Rev. 0

8 Freescale Semiconductor

Common Kernel Example Demonstration

4.3 Complex Radix-2 and Radix-4 FFT/IFFT 16x16

Location

fd_sc3850 kernelsitests\fft_ifft radix 2 4 16x16\cw\test sc3850 fft ifft radix 2 4 comple
X_16x16\

Function:

Radix-2 and Radix-4 complex FFT with 16-bit input and 16-bit output. Data structure is double
word [real][imag]. It supports 32, 128, 512 and 2048 points FFTs.

Radix-2 loop is used for first stage additions and subtractions and Radix-4 is used for the main
FFT loops.

ASM Prototype:
FFT:

void sc3850_ fft radix 2 4 complex 16x16_asm (
Wordlé data buffer([],
Wordlé wctwiddles|[],
Wordlé wbdtwiddles][],
Wordlé n,
Wordlé 1n,
Wordlé Shift down) ;
IFFT:

void sc3850_ ifft radix 2 4 complex 16x16_ asm (
Wordlé data buffer([],
Wordlé wctwiddles|[],
Wordlé wbdtwiddles][],
Wordlé n,
Wordlé 1n,

Wordlé Shift down) ;

C Prototype:
FFT:

void sc3850_ fft radix 2 4 complex 16x16 c (Wordlé data buffer([],
Wordlé wctwiddles|[],
Wordlé wbdtwiddles|],
Wordlé n,
Wordlé 1n,
Wordlée Shift down) ;
IFFT:
void sc3850 ifft radix 2 4 complex 16x16 c (
Wordlé data buffer(],
Wordlé wctwiddles|[],
Wordlé wbdtwiddles|],
Wordlé n,
Wordlé 1n,
Wordle Shift down) ;

I nputs:

wordié data buffer[]: Addressof Input and Output Buffer. Input and output share one
memory area pointed by data_buffer.

wordié wctwiddles []: Addressof the array of twiddle factor Wc

Wwordié wbdtwiddles[]: Addressof the array of twiddle factor Wb and Wd

MSC8156EVM Kernels Starting Guide, Rev. 0

Freescale Semiconductor 9

Common Kernel Example Demonstration

Wordlé n:FFT-pO““
Word1lé 1n: Base 4 Log(N). Number of FFT stages
word1le shift down: Scaling down parameter at each stage

Outputs:

word1l6 data buffer[] : Addressof Input and Output Buffer. Input and output share one big
memory area pointed by data_buffer.

NOTE

Thetest example of Radix-4 and Radix2 FFT isvery similar to Radix-4 FFT in the previous
section, although they use different algorithmsin calcul ation. Please refer to section 3.2 for
detailed description on how to implement the kernel

Performance Measurement:
Table 2 lists the measured cycle counts:

Table 2. ASM Cycle Counts

Radix-2-4 FFT Lengths Cold Cache Warm Cache
32 361 126
129 636 476
512 2410 2179
2048 33645 10227
4.4 IR
Location

fd sc3850 kernelsitests\iir_1st\cw\test sc3850 iir 1st\

Function:
First order IR filtering

ASM Prototype:

void sc3850 iir 1st asm(iir 1st arg*pt);

C Prototype:

Void sc3850 iir 1st c(iir 1st arg*pt);

Structure Definition:
typedef struct iir 1st art t {

wordl6 *yi

wordlé *X; // Pointer to input buffer
wordlé *C; // Pointer to coefficient list
wordlé *s; // Pointer to state variable list
unsigned short M) ; // IO buffer size

MSC8156EVM Kernels Starting Guide, Rev. 0

10

Freescale Semiconductor

Common Kernel Example Demonstration

I nputs:
The structure inputs are defined by the codes shown in Table 9.

// Struct p

.y=Dout;
.x=Din;
.c=Coeffes;
.s=State;
.M=Nout

's'o o oo

// Import inputs and coefficients

Wordlé Input [Ninput]s=
{#include
"../vectors/filt iir 1st_in.io"};

Wordlée Coeffes[Ntapsl]=
{#include "../vectors/coeff.dat" };

// define State and Nout
State[0] =0;State[1]=0;

#define Nout 24

// write to Din

for (i=0;i<Ninput/Nout;i++)

{

for (j=0;j<Nout;j++)

{

Din[j] =Input [i*Nout+jl;}

Figure 9. Input Definitions

Output:
wordile +y. pointer to output buffer

NOTES
1. Number of data samples has to be multiple of 4.

2. Adjust the data size when changing the input files

3. warmcacue iISamacro to call the kernel twice to bring the code into the cache. Use only this macro
for cycle measurements. Otherwise, the input data is overwritten resulting with incorrect results.

#define WARMCACHE

Performance Measurement

Estimated cycle count: 8*Nr/4 + 13, Nr isthe number of data samples
Measured cycle count: 67 cyclesfor asm, 139 cyclesfor C

MSC8156EVM Kernels Starting Guide, Rev. 0

Freescale Semiconductor 11

Common Kernel Example Demonstration

4.5 Division 16x16

L ocation
fsl_sc3850_kernels\tests\div\cw\test_sc3850_div\

Function
Computey = a/b where a, b are 16 bits real numbers

ASM Prototype:

Wordlé sc3850_div_16x16_ asm(div_arg 1lé6xl6*arg)

C Prototype:

Wordlé sc3850 div_16x16_c(div_arg 1lé6xlé6*arg)

Structure Definition:
typedef struct div_arg 16x16 _t { wordlé a, wordlé b}

I nputs:

a: an array of numerators

b: an array of denominators

a and b should be the same size

In the test code, the inputs are imported and defined by the code shown in Figure 10..

Wordlé in[L*2]=
{#include "../vectors/div_16x16_in.io"

i
for (i=0;i<L;i++)
{p.a=in[i*2]; // even entries asnumerators
p.b=in[2*i+11; //odd entries asdenominators

o}

Figure 10. Input Definitions

Output:
The function will return a Word16 result.

Performance Measurement:

Estimated cycle count: 15 + overhead
Measured cycle count: 27 for ASM, 33 for C

MSC8156EVM Kernels Starting Guide, Rev. 0

12 Freescale Semiconductor

Common Kernel Example Demonstration

4.6 Ln

Location
fsl sc3850 kernels\tests\Ln\

Function:
Computes Ln(x) for every x in the input array and returns the results into the output array.

C Prototype:

Word32 sc3850 1n c(1ln arg t);

Structure Definition:

typedef struct ln _arg t { Word32 *X, // The array of input values
Word32 *Y, // The array of results after computation
unsigned Short n}

The structure is defined by the codesin the test file shown in Figure 11.

stream = fopen("..\\vectors\\test in.dat", "r");
for (i=0;i<M;i++)

{

fscanf(stream, " %d ", &list);
out[i]=abs(list);

}

xX=out;

p.X=x;

p.Y=Y;

n= (unsigned short) M;
p.N=nN;

Figure 11. Structure Definitions

Output:
word3z +y:. Pointer to the output buffer.
It iswritten into a vector file and compared with the reference output

NOTES
1. Thesize of the input array should be multiple of 4
2. Thealgorithm uses a polynomial approximation. |err(x)| < 1*10"-5

Performance Measurement:
Measured cycle counts: 100 cycles

MSC8156EVM Kernels Starting Guide, Rev. 0

Freescale Semiconductor 13

Common Kernel Example Demonstration

4.7

Location

Matrix Inversion Complex 2x2

fsl sc3850 _kernels\tests\matrix inv complex 2x2\cw\test sc3850 mat inv complex 2x2\

Function:

Computes the inverse of a complex 2x2 matrix, 16-bit signed input, 16-bit signed output.

C Prototype:

Complexl6 sc3850 matrix inverse 2x2 complexlé6 C(

const Complexlé6 * input,
Complexl6 * output,

Wordlé * output shift left);

ASM Prototype:

Complex16 sc3850_matrix inverse_ 2x2_ complexl6_ASM (

const Complexlé * input,
Complexl6 * output,

Wordle * output shift left);

I nputs:
word1lé6 Input[]1: INput matrix
word16 output [1: Output matrix

word1lé output shift left[o]: Shift right value for output
In the test code, the inputs are imported and defined by the following code.

for (i=0;i<M;i++)

{

fscanf(stream,
outl[il=abs(list) ;

}

xX=o0ut;
p.X=Xx;
p.Y=Y;

n= (unsigned short)
p.N=N;

stream = fopen("..\\vectors\\test in.dat", "r");

n %d n ’

M;

&list);

Figure 12. Input Definitions

Output:
word1é6 output []: Output matrix

complexls det32: Return value of scaled determinant; if thisvalueis zero, the matrix cannot be
inverted and the output of this function is senseless.

Performance Measurement:
ASM version: 87 cycles
C version: 145 cycles

MSC8156EVM Kernels Starting Guide, Rev. 0

14

Freescale Semiconductor

4.8

Common Kernel Example Demonstration

Matrix Inversion Complex 4x4

Location

fsl sc3850 _kernels\tests\matrix inv complex 4x4\cw\test sc3850 mat inv complex 4x4\

Function:
Computes the inverse of a complex 4x4 matrix, 16-bit complex input (16-bit real and 16-bit
complex), 32-bit signed output (32-bit real and 32-bit complex).

C Prototype:

Word32 sc3850 matrix inverse 4x4 scale c(
const Complexl6é * source,
Word32 * output,
Wordlé * sf,
Word32 det,
Word32 input_shift);

ASM Prototype:

Word32 sc3850_matrix inverse_4x4_scale_ASM(
const Complexl6é * source,
Word32 * output,
Wordlé * sf,
Word32 det,
Word32 input_shift);

I nputs:

const Complexlé6* source. Pointer to input matrix, input must be in Complex16 format
word32 detmin: Determinant threshold used to return an error code

word32 input_shift: Shift parameter used to scale down the input data to avoid overflowing

Output:
wordie *sf: Pointer to scaling factor
word32 * output: Pointer to output matrix, the output isin Complex32 format

Performance Measurement:
ASM version: 294 cycles
Optimized C version: 511 cycles

MSC8156EVM Kernels Starting Guide, Rev. 0

Freescale Semiconductor 15

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284
+1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

+1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: AN4228
Rev. 0
10/2010

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, and StarCore are trademarks of
Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service
names are the property of their respective owners.

© 2010 Freescale Semiconductor, Inc.

freescale:

semiconductor

	MSC8156EVM Kernels Starting Guide
	1 Introduction
	2 What You Need to Run this Project
	3 Test Procedures
	4 Common Kernel Example Demonstration
	4.1 FIR_complex_16x16
	4.2 Complex Radix-4 FFT/IFFT 16x16
	4.3 Complex Radix-2 and Radix-4 FFT/IFFT 16x16
	4.4 IIR
	4.5 Division 16¥16
	4.6 Ln
	4.7 Matrix Inversion Complex 2¥2
	4.8 Matrix Inversion Complex 4¥4

